Global synchronous changes in the carbon isotopic composition of carbonate sediments unrelated to changes in the global carbon cycle.

نویسنده

  • Peter K Swart
چکیده

The carbon isotopic (delta(13)C) composition of bulk carbonate sediments deposited off the margins of four carbonate platforms/ramp systems (Bahamas, Maldives, Queensland Plateau, and Great Australian Bight) show synchronous changes over the past 0 to 10 million years. However, these variations are different from the established global pattern in the delta(13)C measured in the open oceans over the same time period. For example, from 10 Ma to the present, the delta(13)C of open oceanic carbonate has decreased, whereas platform margin sediments analyzed here show an increase. It is suggested that the delta(13)C patterns in the marginal platform deposits are produced through admixing of aragonite-rich sediments, which have relatively positive delta(13)C values, with pelagic materials, which have lower delta(13)C values. As the more isotopically positive shallow-water carbonate sediments are only produced when the platforms are flooded, there is a connection between changes in global sea level and the delta(13)C of sediments in marginal settings. These data indicate that globally synchronous changes in delta(13)C can take place that are completely unrelated to variations in the global carbon cycle. Fluctuations in the delta(13)C of carbonate sediments measured during previous geological periods may also be subject to similar processes, and global synchroniety of delta(13)C can no longer necessarily be considered an indicator that such changes are related to, or caused by, variations in the burial of organic carbon. Inferences regarding the interpretation of changes in the cycling of organic carbon derived from delta(13)C records should be reconsidered in light of the findings presented here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mg isotopic composition of Cenozoic seawater – evidence for a link between Mg-clays, seawater Mg/Ca, and climate

a r t i c l e i n f o a b s t r a c t Keywords: seawater chemistry Cenozoic climate global carbon cycle magnesium isotopes Cooling of Earth's climate over the Cenozoic has been accompanied by large changes in the magnesium and calcium content of seawater whose origins remain enigmatic. The processes that control these changes affect the magnesium isotopic composition of seawater, rendering it a...

متن کامل

Neogene growth of the sedimentary organic carbon reservoir

We develop a recycling model using 13C/12C mass balance for net growth/loss of the sedimentary organic carbon (Corg) reservoir, and apply it to the Neogene bulk marine carbonate δ13C record. The model allows for variations in photosynthetic fractionation factors, carbon cycling rates, and the isotopic composition of riverine carbon inputs to the oceans. The sign of the net flux term is controll...

متن کامل

Enigmatic origin of the largest-known carbon isotope excursion in Earth's history

285 The global carbon cycle is the biogeochemical engine at the heart of acid–base and redox processes in the oceans and atmosphere. It constitutes the most fundamental way in which the biosphere shapes the chemistry of our planet. Studying the behaviour of the carbon cycle during times past, however, presents unique challenges. On geological timescales, the CO2 emitted from volcanoes and the w...

متن کامل

Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling

We have extended the 3-D ocean based “Grid ENabled Integrated Earth system model” (GENIE-1) to help understand the role of ocean biogeochemistry and marine sediments in the long-term (∼100 to 100 000 year) regulation of atmospheric CO2, and the importance of feedbacks between CO2 and climate. Here we describe the ocean carbon cycle, which in its first incarnation is based around a simple single...

متن کامل

A middle Eocene carbon cycle conundrum

1 The global carbon cycle The global carbon cycle encompasses the sum of processes that determine the amount of carbon within, and fluxes between, different carbon reservoirs on Earth (Fig. 1). These processes are quantitatively important on a range of timescales and can induce both short-term fluctuations and changes in steady-state conditions1–3. On timescales of up to centuries and thousands...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 37  شماره 

صفحات  -

تاریخ انتشار 2008